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Abstract: We report the development of a fiber-integrated picosecond

source at 560 nm by second harmonic generation of a Raman fiber laser.

A picosecond ytterbium master oscillator power fiber amplifier is used to

pulse-pump a Raman amplifier, which is seeded by a continuous wave

distributed feedback laser diode operating at 1120 nm. The pulse train

generated at 1120 nm is frequency-doubled in a fiber-coupled periodically-

poled lithium niobate crystal module, producing 450 mW of average power

at 560 nm with a pulse duration of 150 ps at a repetition rate of 47.5 MHz.

The near diffraction-limited (M2
= 1.02) collimated output beam is ideal

for super-resolution microscopy applications.
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1. Introduction

Compact, turn-key sources of picosecond radiation at 560 nm are in great demand for many

fluorescence-based imaging techniques, including stimulated emission depletion microscopy

(STED) [1], semiconductor characterization and biochemical analysis [2]. Pulsed semiconduc-

tor laser diodes operating at this wavelength have recently become commercially available but

they suffer from limited average output power with an elliptical output beam and low degree

of polarization. In contrast, fully fiber-integrated systems are known to be a good solution in

applications requiring high average power and excellent beam quality.

The lack of efficient actively-doped silica fibers emitting in the visible spectral region

has fueled intense research and commercial effort towards the use of second-harmonic gen-

eration (SHG) to extend the wavelength coverage of fiber lasers into the visible and near-

visible [3]. Single-pass SHG in periodically-poled crystals is a compact and efficient technique

for frequency-doubling fiber lasers, however, the use of bulk optical components negates the

alignment and maintenance-free nature of fiber-integrated systems [4].

In this contribution, we report the frequency-doubling of a picosecond Raman fiber laser

operating at 1120 nm, using a fiber-coupled periodically-poled lithium niobate crystal module.

The high average power and excellent beam quality of this small-footprint source, emitting at

560 nm, make it an ideal tool for fluorescence-based imaging applications.

2. Picosecond Raman fiber laser at 1120 nm

Although direct pulsed emission of Yb-fiber lasers has been demonstrated at 1120 nm [5],

the larger emission cross-section at shorter wavelengths severely limits performance due to

gain competition, giving rise to excessive amplified spontaneous emission (ASE) and parasitic

lasing. It is therefore technologically challenging to develop efficient, high signal to noise ratio

amplifiers for this wavelength [6]; because of this, commercial off-the-shelf amplifiers are not

currently available.

In contrast, well developed [7] Yb-fiber lasers operating around 1070 nm can be used to pump

highly efficient Raman amplifiers operating at 1120 nm [8]. However, the long gain fiber lengths

required with continuous wave (CW) pumping make it difficult to preserve narrow spectral

linewidth pulsed signals, due to nonlinear spectral broadening through self-phase modulation

(SPM).

Our approach circumvents this issue by pulse-pumping a Raman amplifier, seeded by a CW

signal, with a ytterbium master oscillator power fiber amplifier (Yb-MOPFA) system. Due to

the virtual energy states involved in Raman amplification, there is no energy storage in the gain

medium. Therefore, gain is only available in the window of the pump pulse and hence the pulse

characteristics of the pump source are imposed on the CW seed signal, generating a train of

picosecond pulses at 1120 nm.

The use of a small mode-field diameter, germanium-doped Raman gain fiber gives a higher

nonlinearity and an enhanced Raman gain coefficient over standard single-mode fiber. This,

combined with a high peak-power pump source, enables short gain fiber lengths to be used,

reducing the nonlinear phase shift acquired by the signal. This is important for maintaining

the narrow spectral linewidth of the seed signal, necessary for efficient frequency-doubling in

periodically-poled crystals.

The Yb-MOPFA was seeded by a commercial passively mode-locked Yb-fiber laser (Fia-

nium), operating at 1064 nm (Fig. 1). The oscillator produced 7 ps, near transform-limited,
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Fig. 1. Schematic of the picosecond Raman fiber laser. Yb MLL, ytterbium mode-locked

laser; DF, dispersive fiber; FLM, fiber loop mirror; YDFA, ytterbium-doped fiber ampli-

fier; ISO, isolator; PC, polarization controller; LD, laser diode; WDM, wavelength division

multiplexer.

sech2 pulses at a repetition rate of 47.5 MHz. To enable amplification to high average powers,

the oscillator’s pulses were stretched to 350 ps [Fig. 2(a)] by double-passing a 1.25 km length

of normally dispersive fiber using an optical circulator and fiber-loop mirror. Due to the high

nonlinearity of the normally dispersive fiber (OFS Raman Fiber), the oscillator’s spectrum was

broadened through SPM [Fig. 2(a) inset], which enhanced the rate of dispersive broadening of

the pulses.

The temporally-stretched oscillator pulses were directly amplified in a commercial multi-

stage Yb-fiber amplifier (IPG Photonics) with a gain of 45 dB and a saturated output power of

10 W. An optical isolator was spliced to the output of the amplifier, to protect it from backwards

propagating Raman ASE generated by the Raman amplifier. Since the Yb-MOPFA was con-

structed from isotropic fiber, a three-paddle polarization controller was spliced to the isolator
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Fig. 2. (a) Sampling optical oscilloscope trace of the stretched mode-locked oscillator pulse

(black) and autocorrelation trace of the original oscillator output (blue). Inset: optical spec-

trum of the stretched (black) and original (blue) oscillator pulses. (b) Optical spectrum of

the output of the Raman amplifier. Inset: sampling optical oscilloscope trace of the filtered

1120 nm pulses.
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to provide complete control over the randomly polarized output of the amplifier.

The pulsed 1064 nm pump radiation from the Yb-MOPFA was spectrally combined with a

CW 1120 nm signal from a fiber-pigtailed distributed feedback laser diode (QD Laser, Inc) in a

polarization-maintaining (PM) wavelength division multiplexer (WDM). The laser diode had an

average output power of 30 mW and operated with a single longitudinal mode, corresponding

to a spectral linewidth of < 10 MHz. A 10 m length of PM Raman fiber (OFS PM Raman Fiber)

was used as the Raman gain medium and a second PM WDM was spliced to the output of the

Raman fiber to filter residual pump light.

Figure 2(b) shows the optical spectrum of the Raman amplifier output for an average power

of 2.22 W, with 80% of the power contained in the 1120 nm signal, equivalent to 1.78 W. The

corresponding output power of the Yb-MOPFA pump was 5.2 W, giving a conversion efficiency

of 34%, taking into account the input power of the 1120 nm seed signal. The conversion effi-

ciency was limited by the excess loss of the two WDMs (0.9 dB) and the two splice losses to the

small-core Raman fiber (1 dB). The 3 dB spectral linewidth of the 1120 nm signal in Fig. 2(b)

is 0.29 nm, which was significantly broader than the seed signal due to SPM in the excessive

length of Raman fiber. This effect could be mitigated by performing a cut-back on the Raman

fiber to optimize the output linewidth for a given pump peak-power.

The 1120 nm signal had a pulse duration of 230 ps [Fig. 2(b) inset] at the pump repetition rate

of 47.5 MHz, with no observable pedestal on a sampling optical oscilloscope with a dynamic

range of 30 dB (Hamamatsu OOS-01). The reduction in duration from the Yb-MOPFA pump

pulses was expected due to the nonlinear nature of the Raman amplification. The use of PM

fiber in the Raman amplifier and the polarizing nature of Raman amplification enabled the

1120 nm signal to be amplified with an output PER of 14 dB.

3. Frequency-doubling using fiber-coupled PPLN module

The frequency-doubling optical setup was packaged in a compact and robust fiber-coupled

module measuring 120×40×26.5 mm, greatly reducing the footprint of the source (Fig. 3).

The design of the module was based on a previous iteration for generation of 780 nm light,

highlighting the wavelength flexibility of the concept [9].

Fig. 3. Photograph of the fiber-coupled frequency-doubling module.
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Inside the module, a 15 mm long 5% MgO-doped congruent lithium niobate crystal, held in

a metal housing, was bonded to a thermoelectric cooler (TEC).The crystal had a thickness of

1 mm, a width of 3 mm and a manufacturer quoted effective nonlinear coefficient of > 14 pm/V.

The crystal was poled with a single 8.06 µm pitch grating, giving a phase-matching bandwidth

of 0.176 nm for the fundamental wavelength of 1120 nm. The crystal was anti-reflection coated

on the input and output facets for both the fundamental and second-harmonic wavelengths.

The PM980 input fiber to the module was focused to a waist of 30 µm at the center of

the crystal using an f = 2.95 mm aspheric lens. The ratio of the crystal length to the confo-

cal parameter was 2.97, which was close to the optimal Boyd-Kleinman focusing condition of

2.84 [10]. The slow-axis of the input fiber was aligned to the extraordinary axis of the crys-

tal to maximize the SHG efficiency. After the crystal, the residual 1120 nm pump power was

directed out of the module through an AR-coated window using an orthogonal pair of 45°

dichroic mirrors. The generated second-harmonic was collimated to a diameter of 1.1 mm us-

ing an f =−10 mm and f = 20 mm telescopic pair of aspheric lenses. All of the optical compo-

nents and the TEC controlled crystal housing were bonded to a baseplate that was temperature

controlled using three TECs in series. The individual temperature control of the crystal and

the baseplate ensured the phase-matching temperature could be maintained with a precision

of ±0.1 °C without perturbing the alignment of the optical setup. The calculated full-width

half-maximum temperature acceptance bandwidth of the crystal was 1.8 °C, which with the

precision of the temperature control sets an upper limit on the SHG power stability of < 1%.

The Raman fiber laser described in the preceding section was fusion spliced to the input

fiber of the frequency-doubling module. A maximum average power of 450 mW of 560 nm

was generated for 1.78 W of 1120 nm, giving a conversion efficiency of 25% at the optimum

phase-matching temperature of 74.4 °C. The conversion efficiency was predominantly limited

due to the fact that the 1120 nm pump bandwidth (0.29 nm) exceeded the spectral acceptance

bandwidth of the crystal (0.176 nm). Integrating the pump spectrum over the spectral accep-

tance of the crystal revealed that only 45% of the 1120 nm power, equivalent to 0.8 W, was

available for SHG, giving an effective 56% SHG conversion efficiency.

The 560 nm pulse duration was 150 ps [Fig. 4(a)] at a repetition rate of 47.5 MHz, which

is ideally suited to STED microscopy applications [11]. The estimated maximum peak power

intensity of the generated 560 nm signal was ∼ 4.5 MW/cm2, which was approaching the
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Fig. 4. (a) Sampling optical oscilloscope trace and optical spectrum (inset) of the 560 nm

frequency-doubled module output. (b) Measured beam caustic of the collimated module

output focused by an f = 200 mm lens with the Gaussian beam fit parameters (inset).
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photorefractive damage threshold limit of 5% MgO-doped PPLN [12]. Further scaling of the

560 nm average power would require looser focusing to ensure the second-harmonic peak in-

tensity remained below the photorefractive damage threshold. The spectral linewidth of the

560 nm signal was measured to be < 0.1 nm, limited by the resolution of the optical spectrum

analyzer [Fig. 4(a) inset]. A CCD camera was used to measure the beam diameter of the col-

limated module output focused by an f = 200 mm lens [Fig. 4(b)]. A Gaussian fit of the beam

caustic revealed a near-diffraction limited beam, with an M2
= 1.02 and an ellipticity of 0.95.

4. Conclusion

In conclusion, we have demonstrated a small footprint, turn-key fiber-integrated source of pi-

cosecond pulses at 560 nm, a key wavelength for many fluorescence-based imaging techniques.

By pulse-pumping a Raman amplifier, which was seeded by a narrow linewidth DFB laser

diode, we efficiently converted 1064 nm picosecond radition from a Yb-MOPFA to 1120 nm.

The 1120 nm pulse train was frequency-doubled to 560 nm in a robust and compact fiber-

coupled PPLN module. The source generated 450 mW of 560 nm light with a pulse duration of

150 ps at a repetition rate of 47.5 MHz. The circular (ellipticity 0.95) collimated output beam of

the module had near diffraction-limited beam quality (M2
= 1.02). This source is an ideal tool

for applications such as STED microscopy, which require high peak-power, picosecond pulses

with excellent beam quality.
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